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1 Introduction

Background

The Department of Defense is tasked with the cleanup of soils and ground-
water at military installations. Many of these installations were involved in the
manufacture and packing of 2,4,6-trinitrotoluene (TNT). Asaresult of these
operations, subsurface contamination by TNT poses a potential threat to ground-
water resources at many of these munitions facilities (Spaulding and Fulton 1988;
Pugh 1982). To support remediation and containment efforts, technical guidance
in modeling subsurface transport of TNT is needed.

Technical guidance for modeling the subsurface transport of TNT includes
identification of applicable processes and the conditions for which these
processes dominate. Many processes potentialy affect subsurface transport of
TNT, but the relative significance of individual processesvaries. Technical
guidance for modeling the subsurface transport of TNT aso includes develop-
ment of descriptors for significant processes and estimation of parameters used to
quantify these descriptors. Valid process descriptors, along with good estimates
of parameters used to quantify these descriptors, are vital to evaluation of various
remediation and containment strategies.

Research Need

Sorption is a key process controlling TNT subsurface transport (Townsend
and Myers 1996). Reductive transformations (Figure 1) are the most important
degradation reactions affecting TNT subsurface transport (Townsend and Myers
1996). Recent research has led to a better understanding of the effects of these
processes on TNT subsurface transport; however, many questions remain
unanswered.

Column studies are laboratory-based physical models of contaminant transport
in the subsurface and are often used to study contaminant transport processes.
Column studies produce contaminant breakthrough curves (BTCs) when clean
soils are challenged with contaminated water and/or contaminant elution curves
when contaminated soils are challenged with clean water. In either case,

Chapter 1 Introduction
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Figure 1. Reduction pathways for 2, 4, 6-trinitrotoluene (modified from
McGrath 1995)

laboratory soil column data may be described by mathematical modelsin order to
assess the contribution of each process modeled and to obtain fitted parameters.
Satisfactory fitting of the model to the observations supports but does not prove
the contention that all relevant processes have been described/modeled ade-
guately. However, failure to reproduce observations indicates omission of one or
more significant processes from the model. Mathematical models used to simu-
late column data are usually based on the classical advection-dispersion equation
and employ an analytical or numerical computation method. Column studies
have been employed to investigate subsurface transport of TNT (Ainsworth et .
1993; Comfort et al. 1995; Selim, Xue, and Iskandar 1995; Pennington et al.
1995; Townsend, Myers, and Adrian 1995; Olin, Myers, and Townsend 1996;
Myerset al., In Preparation). Results of these studies have varied and so have
modeling approaches.

Ainsworth et a. (1993) employed an anaytical model with alinear equili-
brium descriptor for sorption to simulate TNT BTCs. This model was unable to
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capture the BTC asymmetry and mass loss shown by some of the BTCs.
Ainsworth et al. (1993) aso used models that accounted for (a) aslow first-order
reversible reaction and linear sorption, (b) a slow first-order reversible reaction
and nonlinear sorption, and (c) afirst-order irreversible reaction. They found that
none of the models were able to fully capture the asymmetry and mass loss
observed in the BTCs.

Comfort et d. (1995) used an analytical moddl with alinear equilibrium
descriptor coupled with afirst-order transformation descriptor to simulate TNT
BTCs. Thismodel did not smulate the BTCs well due to BTC asymmetry. Since
analytical solutions are limited to linear descriptors for sorption, Comfort et al.
(1995) aso used a numerical model (van Genuchten 1981) that included a non-
linear sorption descriptor (Freundlich isotherm) and first-order transformation.
The numerical model with nonlinear sorption simulated the BTCs much better
than the analytical solution with linear sorption.

Selim, Xue, and Iskandar (1995) aso used a numerical moddl (Selim,
Amacher, and Iskandar1990) to smulate TNT BTCs. The numerical solution
employed by these researchers, like the numerical solution used by Comfort et al.
(1995), incorporated Freundlich sorption and first-order transformation and fit the
data well.

Townsend, Myers, and Adrian (1995) and Olin, Myers, and Townsend (1996)
used a complete-mix analytical model with linear equilibrium sorption and first-
order transformation to smulate TNT BTCs abtained from short-length columns.
The complete-mix analytical moddl simulated the BTCs well.

Myerset al. (In Preparation) used an analytical solution (van Genuchten and
Alves 1982) that incorporated linear equilibrium sorption and first-order trans-
formation to simulate TNT BTCs for sand, silt, and clay soils. The analytical
solution simulated the sand BTC well, but failed to simulate the silt and clay
BTCs.

Mathematical models are required for evaluating contaminant transport in
laboratory soil column studies. Analytical models are of limited utility in many
soil column studies because they are highly restrictive of the process descriptors
that can be investigated. Analytical models, for example, are not available for
nonlinear sorption and reaction terms. Numerical models are not limited to linear
process descriptors, but numerical models are generally more difficult to imple-
ment than analytical models. Further, researchers that use numerical models tend
to use their own codes, which may not be widely available, verifiable, or easy to
modify. Since the literature indicates mixed success for analytical models, a
model that is straightforward to implement, yet complex enough to accept non-
linear process descriptors, is needed for evaluating TNT laboratory soil column
data.
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Purpose and Scope

The purpose of this study was to evaluate the applicability of a one-
dimensional, semianalytical solute transport model developed by Moldrup et a.
(1992) and Y amaguchi et a. (1994) to TNT laboratory soil column studies. The
Moldrup et a. (1992) and Y amaguchi et al. (1994) model incorporates linear
and/or nonlinear reaction terms into the advection-dispersion equation. The
semianalytical model was applied to TNT BTCsfor four soilsandto a TNT
elution curve for a contaminated soil from amilitary installation. Application of
the model to field problems was not investigated, nor was application of the model
to contaminants other than TNT investigated.
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2 Materials and Methods

Soil Column Breakthrough Curves

Soil column experiments were conducted in stainless steel columns (Figure 2),
15.24-cm length and 4.45-cm inside diameter. Four uncontaminated soils (A, B,
C, and D) from the Louisiana Army Ammunition Plant (LAAP), Bossier City,
LA, were used in the column studies. The four soils were excavated from various
depths at the LAAP. Soil A was located between 2.4 and 3.4 m below the soil
surface. Soil B was |located between 3.7 and 4.6 m below the soil surface. Soil C
was located between 1.2 and 2.3 m below the soil surface. Soil D was located
between 2.3 and 3.5 m below the soil surface. Soils A, B, and C were silty sands,
and Soil D was asandy clay. Each soil was air-dried and passed through a
10-mesh screen. Physical and engineering properties of the soils are shown in
Table 1, and grain-size distributions are shown in Figures 3, 4, 5, and 6 for Soils
A, B, C, and D, respectively. Specific gravities, water contents, and hydraulic
conductivities were determined according to methods described in U.S. Army
Corps of Engineers (1970). Soils were loaded into the columns in two approxi-
mately equal lifts. The soil surface was scarified between lifts to minimize
bedding planes. Flows (upflow mode) were set to provide average pore water
velocities of about 10 cm/sec using constant-volume metering pumps (Model
QG6-0-SSY, Fluid Metering, Inc., Oyster Bay, NY). Column operating param-
etersare provided in Table 2. Bulk densities were calculated from water content,
total soil weight loaded, specific gravity, and column inside dimensions. Effec-
tive porosities were determined from chloride tracer studies as discussed later in
the section on dispersion coefficients. Average pore water velocities were deter-
mined from effective porosities and column operating records.

Table 1

Physical and Engineering Properties of Soils

Soil A B C D
Specific Gravity 2.66 2.68 2.70 2.74
Water Content 0.008 0.008 0.021 0.043
Hydraulic Conductivity, 3.17 x 10* 2.97 x 10™ 7.75 x 107 <10°
cm/sec

Chapter 2 Materials and Methods
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Figure 2. Soil column test apparatus and soil column schematic
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Table 2
Column Operating Parameters

Soil A B C D

Bulk Density, g/cm?® 1.15 1.23 1.13 1.14
Effective Porosity 0.53 0.49 0.45 0.46
Average Pore Water Velocity, cm/sec | 1.3 x 10 1.4 x 10™ 1.8 x 10 1.1 x 10*

After loading the columns with soil, uncontaminated water was prepared
using groundwater from Ada, OK, with apH of 7.56, a conductivity of 645 S,
and an akalinity (as CaCO;) of 420 mg/( and de-aired, distilled deionized (DDI)
water at aratio of one part groundwater to two parts DDI water. Uncontaminated
water was pumped at steady flow through the columns for approximately 3 weeks
in order to allow the hydraulic properties of the columns to stabilize. TNT-
contaminated water was prepared by dissolving 10-percent hydrated TNT
(Eastman Kodak, Rochester, NY) in de-aired DDI water and mixing with the
groundwater discussed previoudly at aratio of one part groundwater to two parts
TNT solution. TNT-contaminated water was then pumped into the columns at
steady flow to provide a step input loading sufficient to displace approximately
9 to 13 pore volumes. Concentrations of TNT, 2-amino-4,6-dinitrotoluene
(2A-DNT), 4-amino-2,6-dinitrotoluene (4A-DNT), 2,4-diamino-6-nitrotoluene
(2,4-DANT), 2,6-diamino-4-nitrotoluene (2,6-DANT), 1,3,5-trinitrobenzene
(TNB), 1,3-dinitrobenzene (DNB), 2,6-dinitrotoluene (2,6-DNT), 2,4-
dinitrotoluene (2,4-DNT), 4,4',6,6'-tetranitro-2,2'-azoxytoluene (2,2-AZ0OX), and
2,2, 6,6-tetranitro-4,4'-azoxytoluene (4,4-AZ0X) in the TNT-contaminated
groundwater were monitored throughout the experiment (Table 3). After step
input loading of the TNT-contaminated groundwater, columns were eluted with
uncontaminated water at the same flow used for the step input loading.

Table 3
Step Input Contaminant Concentrations, mg/(
Day | TNT |2A-DNT |4A-DNT |2,4-DANT |2,6-DANT |TNB | DNB 2,6-DNT |2,4-DNT |2,2-AzOX | 4,4-AZOX
0 [42.7 | 0.010J3" [<0.020 <0.200 <0.100 0.013 |<0.020 |<0.020 |o0.071 <0.500 <0.500
3 465 | 00123 [<0.020 <0.200 <0.100 0.019 |<0.020 |<0.020 |0.078 <0.500 <0.500
6 |46.6 | 0.013J |<0.020 <0.200 <0.100 0.024 |<0.020 |<0.020 |0.078 <0.500 <0.500
9 |46.1 |<0.020 0.011J |<0.200 <0.100 0.031 |<0.020 |<0.020 |0.077 <0.500 <0.500
12 |46.4 |<0.020 0.012J |<0.200 <0.100 0.033 |<0.020 |<0.020 |0.077 <0.500 <0.500
15 |46.9 | 00143 | 0.023 <0.200 <0.100 0.044 |<0.020 |<0.020 |0.076 <0.500 <0.500
! Jindicates an estimated value between the method detection limit and the laboratory reporting limit.
At the end of the column elution experiments, the soils were extruded,
sectioned, and analyzed for TNT, 2A-DNT, 4A-DNT, 2,4-DANT, 2,6-DANT,
TNB, DNB, 2,6-DNT, 2,4-DNT, and 2,2-AZOX using two high performance
liquid chromatography (HPLC) systems as described in the following section.
Chapter 2 Materials and Methods 11
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Explosives analysis

Column eluate samples were collected in approximately 15-ml incrementsin
amber glass vias (20-ml) using automated fraction collectors (Model UFC, Eldex
Laboratories, Napa, CA). Aliquots of each sample were preserved with an equal
amount of acetonitrile within 24 hr of collection and stored at 4 C in capped
vials until analyzed. Soil column eluate samples were analyzed by HPLC for
TNT, 2A-DNT, 4A-DNT, 2,4-DANT, 2,6-DANT, TNB, DNB, 2,6-DNT, and
2,4-DNT using the dual column confirmation method developed by Jenkins,
Miyares, and Walsh (1988). Sample extracts were filtered through a 0.5-pm
polytetrafluoroethylene filter and analyzed independently on two HPLC systems
(Waters Chromatography Division, Milford, MA). Thefirst HPLC system con-
sisted of a 600 system controller, a 717plus Autosampler, and a 486 Tunable
Absorbance Detector. The second HPLC system consisted of an LC Modulel.
The column for the first system was a Supelcosil LC-18 HPLC column (25 cm by
4.6 mm, Supelco, Bellefonte, PA) eluted with 1:1 methanol/water at 1.2 ml/min.
The column for the second system was an HPLC-CN (Supelco 25 cm by 4.6 mm)
column eluted with 1:1 methanol/water at 1.2 ml/min. Soil column eluate
samples were analyzed for 2,2-AZOX and 4,4-AZ0OX on a Waters 2690 Alliance
Separations Module using a Waters 996 Photodiode Array Detector. The column
was a Waters Nova-Pak C18 column (3.9 by 150 mm) eluted with 54:46
acetonitrile/water at 1.5 ml/min.

Sectioned samples from each soil column were analyzed using the procedure
developed by Jenkins and Walsh (1987). A portion of each sectioned soil sample
(3 g) was extracted for 18 hr in a sonic bath with 10 ml of acetonitrile. The
extracts were diluted 1:1 with calcium chloride solution (5 g/0), filtered through a
0.5-pm polytetrafluoroethylene filter, and analyzed on the HPLC systems
previoudly described.

Dispersion coefficients

Following the elution of explosives, column dispersion coefficients were
determined using a chloride tracer. A constant input of sodium chloride solution
at approximately 105 mg/¢ as Cl- was pumped into the columns until the input CI
concentration was achieved in the effluents. Chloride concentrations in column
eluates were measured potentiometrically using a chloride selective ion electrode
(Orion 9417B) in conjunction with a double junction, deeve-type reference
electrode (Orion 90-02). Potentials were measured on an ion-selective meter
(Crion 720A). Nonlinear curve fitting (Tablecurve, Jandel Scientific, Corte
Madera, CA) was used to estimate dispersion coefficients by fitting the semi-
infinite model for constant input (van Genuchten and Alves 1982) to the chloride
elution curves. The semi-infinite model for constant input is given in Equation 1.

c, - Sapp (A-DL exp[_L) erfe [ L2 DL W

2 DTL) 3 D DTL) 3
u u

Chapter 2 Materials and Methods



where
C; = chloride concentration at L and 7, mg (*
C, = constant input chloride concentration, mg (™
T = pore volumes duted, dimensionless
L = column length, cm
D = dispersion coefficient, cm? sec™
u = average pore water velocity, cm sec!

The average pore water velocity () is calculated from Equation 2,

-2 @

where
O = average flow, cm?® sec?
A = cross-sectiona area of column, cm?
2, = effective porosity, dimensionless

The number of pore volumes eluted (7) is calculated from Equation 3,

L u
T ®

where ¢ equalstime, sec.

In aimost all cases, the second term in Equation 1 is negligible (Domenico and
Schwartz 1990). Thus, for a constant input of conservative tracer, the effluent
tracer concentration equal s approximately one-half of the input concentration
(CIC, = 0.5) when approximately one pore volume has been eluted (7 = 1) since
the complementary error function of zero isone. Since the average flow, cross-
sectional area of column, and column length are known (from column operating
records and column dimensions), and time at C/C, = 0.5 is known (from column
operating records), the effective porosity was calculated for each column from
Equations 2 and 3. The calculated effective porosities were then used to calculate
average pore water velocities, which in turn were used to calculate the number of
pore volumes eluted for each collected sample.

Figure 7 shows the observed and fitted chloride elution curves for each
soil column. From nonlinear curvefitting of Equation 1 to chloride elution
curves, dispersion coefficients of 4.4 x 10° cm?/sec, 3.0 x 10° cm?/sec,
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Figure 7. Observed and fitted chloride elution curves

5.0 x 10° cm?/sec, and 1.1 x 10°° cm?sec were obtained for Soils A, B, C, and D,
respectively.

Semianalytical Model

TNT breakthrough curves were smulated using the semianalytical model
developed by Moldrup et al. (1992) and Yamaguchi et al. (1994) for solute
transport in soils. The Moldrup et a. (1992) and Y amaguchi et a. (1994) model
incorporates linear or nonlinear reaction terms into the one-dimensional
advection-dispersion equation for solute transport and is based on the Moving
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Concentration Slope (MCS) solute transport model developed in Moldrup et a.
(1992). Inthe MCS model, an integrated version of the solute flux equation is
used together with a smple, forward-time discretization (Moldrup et al. 1992).

Model description
The following description was condensed from the model development
provided by Yamaguchi et a. (1994) and Moldrup et a. (1992). For steady water

flow, the governing flux and continuity equations are described by Equations 4
and 5, respectively,

J=-DE£ +uc @
Z

_f - _é -5 5
where

J = contaminant flux, cm mg sec* ¢!

D = dispersion coefficient, cm? sec’

C = liquid phase contaminant concentration, mg (*

Z = distance from column inlet, cm

t =time, sec

S = contaminant removal rate, mg (! sec*
For sorption and first-order decay,

P, C

§=22—=+puC 6
5, M (6)

where
D, = bulk density, kg ("
& = solid phase contaminant concentration, mg kg™
0 = porosity, dimensionless

u = first-order contaminant decay rate coefficient, sec™

Chapter 2 Materials and Methods
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Applying the chain rule (Equation 7), substituting into Equation 6, and
rearranging, Equation 8 is abtained,

¢c__cc (7)
C

P Cl e (U
R A

where the term in parentheses on the left-hand side of Equation 8 is the generalized
form of the retardation factor, R

1. P C
R—[l ec] 9)

A forward-time discretization of Equation 8 yields Equation 10.

wt_ ~t 1t e Ar 1 t
S (Jz&T)Z Jz%w)z) MG A (10)

where subscript Z denotes distance from the column inlet and superscript ¢
denotes time. For instance, J'. 4,4, 1S the contaminant flux at time ¢ at a distance
from the column inlet halfway between Z and AZ.

From Yamaguchi et al. (1994),

D
t _ u _ num t _ t (11)
JZ%%‘F)Z WDz _ 1 A7 (CZ%)Z CZI) vul
and
_AZ oAt ulZ ~
Pn =15 =05 e 1P 12
where

D, =numerical dispersion coefficient (cm? sec?), which corrects the model
for the artificial dispersion created by the calculation scheme itself

At = time increment, sec

AZ = distance increment used in the calculations, cm
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To enable the derivation of a closed-form solution, Y amaguchi et a. (1994)
approximated the contaminant flux at Z = 0 using AZ, rather than one-half AZ as
in the Moldrup et a. (1992) MCS model. Yamaguchi et al. (1994) suggest that
no significant errors are introduced by this approximation compared with the flux
approximation of Moldrup et a. (1992) provided AZ is chosen to be less than or
equal to 0.5.

Introducing the solute unit mean travel distance (@) and the solute dispersivity

(B),

® - ult (13)

(14)

= |3

and substituting Equations 11, 12, 13, and 14 into Equation 10, Equation 15 is
obtained.

C%)t:i *=‘D2723=¢’+R ct
z R A2 AR z
2
+ 1 s + o + po Czt&)z
R | 2AZ 2A 72 AZ? (15)
1{-@ 2 $0) t
t = + - 29%)2
R\ 2AZ 2AZ2 AZ?2
1 t
- = uC, At
R HCZ

Equation 15 represents the semianalytical solution for solute transport with
equilibrium sorption and first-order decay. In order to avoid stability problems,
the maximum distance (Z,,,.) to be used in the calculation scheme should be
chosen using the following criteria (Y amaguchi et a. 1994),

Z, > [2 : %) I _yAt (16)

where [, equals the maximum number of time steps, and the value of ® chosen
should meet the following three stability criteria (Y amaguchi et al. 1994),

0586 _
®<o05¢_ 1

6056+1

(17)
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® < 015 (18)

2< %[ 0.25 + %) - %(0.5(1) L p)<2 (19)
056 _

Sorption descriptors

Any number of equilibrium sorption models may be used smply by defining
M& MC in the retardation factor (Equation 9).

For linear sorption,

_C K, (20)
C

where K, equals the linear equilibrium distribution coefficient, ¢ kg™.
Thus, for linear sorption, R =1+ D,K, /2.

For the Freundlich sorption isotherm,
6 n&l
— - nKg(C3 (21)

where
n =empirica constant
K, = Freundlich constant, mgt " " kg™

For the Langmuir sorption isotherm,

. MO (22)

L+ x,Cy)°

QHQH

where
K, = Langmuir constant, ¢ mg*

O = sorption capacity, mg kg™
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Equation 15 may aso be adapted for nonequilibrium sorption formulations,
aswell as decay terms other than first-order. For the film diffusion physical
nonequilibrium sorption model (adapted from the general mass transfer isotherm
given in McGrath 1995),

=f - Kfil(wC - C() (23)
where

K, = film coefficient, ¢ kg*t™*

C" = contaminant concentration in film immediately adjacent to solid
particle, mg (*

The film diffusion model views transport of contaminants through afilm
surrounding the sorbate as a rate-limiting process. The actua adsorption and
desorption processes may still be equilibrium processes. Thus, for the case of
film diffusion with equilibrium sorption and first-order decay, the film diffusion
term is added to Equation 6, to yield Equation 24

S = [%Kﬁlﬁj - C() + pe (24)
and
2
e L) 2 B g
R\ AZ? AZ?
2
+ i @ + s + p Czt&)z
R | 2AZ 2A 72 AZ? (25)
_ 2
+ 1 o + o + B(I) Czt%)z
R\ 202  2A7Z2 AZ?
1

R (Uczt v Kenfiz * filgj() At

The film diffusion model can aso be used to describe contaminant dissolution.
For contaminant dissolution, C" is defined as the contaminant concentration in
the film immediately adjacent to the contaminant crystal and is equal to the
aqueous solubility limit for the contaminant. Ro et al. (1996) report arange of
100 to 110 mg/¢ for the agueous solubility limit of TNT at 25 C.

Thus, sorption formulations other than linear equilibrium may be investigated
and applied to column data using the semianalytical contaminant transport model.
Transformation formulations other than first-order (not shown here) may also be
incorporated into the model by modifying the last term («C",) in Equation 25.

Chapter 2 Materials and Methods
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3 Results and Discussion

Results

Model testing

The Moldrup et a. (1992) and Yamaguchi et al. (1994) semianalytical model
was implemented using the software program MathCAD (MathSoft, Inc.). An
example of the MathCAD implementations used in this report for the semianalyti-
cal model is shown in Appendix A. In this example, semianalytical model results
are fitted to observed datafor asingle BTC. The semianalytical model was
compared with the analytical model of Cleary and Adrian (1973), an analytical
model from Bear (1972), and the numerical model of Grove and Stollenwerk
(1984).

The Cleary-Adrian analytical model incorporates linear equilibrium sorption
into the advection-dispersion equation. Figure 8 shows a comparison of the
semianalytical model to the Cleary-Adrian model. Nearly identical results were
obtained from each model for avariety of linear equilibrium distribution
coefficients (K ).

The model from Bear (1972) that was compared with the semianalytica model
(Figure 9) is an analytical solution with linear equilibrium sorption aong with
termsfor first-order decay (M) and zero-order growth (7). In this comparison, the
ratio of the zero-order growth term () to the first-order decay term (L) were
varied from 0.1 to 1.0. Excellent agreement between the semianalytical model and
the Bear model were obtained.

The Grove-Stollenwerk numerical model is capable of nonlinear sorption
and/or decay terms. Figure 10 shows a comparison between the semianalytical
model and the Grove-Stollenwerk model for various values of the empirica
coefficient (n) in the Freundlich sorption term. The two models compared well,
although differences in the results from the two models increased dightly as
values of the empirica coefficient decreased. A comparison between the semi-
analytical model and the Grove-Stollenwerk model for Langmuir equilibrium
sorption was also conducted (Figure 11). The two models compared well for a
large range of input concentrations.
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TNT transport modeling considerations

The semianalytical model wasfitted to the TNT BTCs from Soils A through
D. Various process descriptors were evaluated for applicability to the data

The semianalytical model was also applied to a TNT leaching curve for a
field-contaminated soil (Crane soil) reported elsawhere (Pennington et a. 1995).
Crane soil was obtained from the Naval Weapons Support Center, Crane, IN, and
contained a TNT concentration of approximately 25.8 mg/kg (Pennington et al.
1995).

The goodness of fits of the moddl to the data were quantified using the Root
Mean Square (Equation 26).

N
21: (Cfi t Cob;2 (26)

N -F

RMS =

where
RMS = root mean square value, mg (*
C;, = theoretical contaminant effluent concentration, mg (*

C

obs

= observed contaminant effluent concentration, mg (™
N = number of data points
F = number of adjustable parameters used to fit model to observed data
Each TNT BTC reached a steady-state effluent TNT concentration. At steady
dtate, the rates of adsorption and desorption are equal, and thus are eliminated
from the advection-disperson moddl. For first-order decay, the steady-state

effluent TNT concentration (C,,) is calculated from Equation 27 (van Genuchten
and Alves 1982)

C, = Coex%u] (27
2D

where C,, equals the steady-state effluent contaminant concentration, mg ¢, and
where v is calculated from the following

[1 4uD)—§ (28)

u2
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Combining Equations 27 and 28, and rearranging, the first-order transformation
rate constant (L) is solved for (Equation 29)

CO z 22 CO

Thus, first-order transformation rate constants were calculated from the
steady-state portion of the TNT BTCs, leaving only the parameter(s) for sorption
to be obtained from the semianalytical model fits. TNT BTCsfor SoilsA, B, C,
and D were evauated using first-order transformation with linear, Freundlich,
and Langmuir equilibrium sorption formulations.

(29)

The TNT elution curve for Crane soil was evaluated using first-order trans-
formation with linear, Freundlich, and Langmuir equilibrium sorption formula-
tions. A descriptor for dissolution (diffusion-limited mass transfer) was also
incorporated into the semianalytical model and applied to the Crane elution
curve.

Equation 29 does not apply to the Crane soil elution curve. Thus, afirst-order
TNT transformation rate constant for the Crane soil could not be obtained without
fitting amodé to the elution data. Furthermore, multiple combinations of sorp-
tion and transformation parameters provided essentially identica fits when sorp-
tion and transformation were the only processes modeled. When dissolution was
added to the processes modeled, however, asingle first-order transformation rate
constant was obtained. This constant was used in the Crane elution curve fits
where sorption and transformation were the only processes modeled.

Soil A. Figure 12 shows the observed TNT BTC for Soil A and the fitted
semianalytical model results for linear equilibrium sorption and first-order trans-
formation. A first-order transformation rate constant () of 0.0011 hr™*, obtained
from the steady-state portion of the BTC, was used in the semianalytical mode.
Linear equilibrium sorption, along with first-order transformation, provided an
adequate fit to the Soil A TNT BTC (RMS = 1.856 mg (**). Near the end of wash-
out, the Soil A TNT BTC shows a small amount of tailing, which could not be
captured using linear equilibrium sorption and first-order transformation. A
linear equilibrium distribution coefficient (K,;) of 0.12 ¢/kg was obtained for the
Soil A TNT BTC.

Figure 13 shows the observed TNT BTC for Soil A and the fitted semianalyti-
cal modd results for Freundlich equilibrium sorption and first-order transforma-
tion. Freundlich equilibrium sorption improved the fit (RMS = 1.775 mg (") over
the fit provided by the linear sorption model. Improvement of the fit was due
primarily to the ability of the Freundlich model to capture the dight tailing
observed in the BTC. A Freundlich constant (K,) of 0.45 mg™ " " kg™ and an
empirical coefficient (n) of 0.73 were obtained.
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Figure 14 shows the observed TNT BTC for Soil A and the fitted semianalyti-
cal modéd results for Langmuir equilibrium sorption and first-order transforma-
tion. Langmuir equilibrium sorption improved the fit (RMS = 1.265 mg (') over
the fits provided by the linear and Freundlich sorption models. The Langmuir
sorption model, like the Freundlich model, was able to capture most of the tailing
shown by the Soil A TNT BTC. A Langmuir constant (K;) of 0.04 ¢/mg and a
sorption capacity (Q) of 9.0 mg/kg were obtained.
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Figure 14. Observed and fitted TNT breakthrough curves for Soil A for
Langmuir sorption and first-order transformation

Soil B. Figure 15 shows the observed TNT BTC for Soil B and the fitted
semianalytical model results for linear equilibrium sorption. Since steady-state
TNT effluent concentrations were at the step input TNT concentration, trans-
formation was negligible during transport through Soil B. Linear equilibrium
sorption provided an adequate fit to the Soil B TNT BTC (RMS = 2.973 mg (™).
Near the end of washout, the Soil B TNT BTC shows a small amount of tailing,
like the Soil A TNT BTC, which could not be captured using linear equilibrium
sorption. A linear equilibrium distribution coefficient (K,) of 0.11 ¢/kg was
obtained for the Soil B TNT BTC.

Figure 16 shows the observed TNT BTC for Soil B and the fitted semianalyti-
cal model results for Freundlich equilibrium sorption. Freundlich equilibrium
sorption improved the fit (RMS = 2.199 mg (") dlightly over the fit provided by
the linear sorption model. Improvement of the fit was due primarily to the ability
of the Freundlich model to capture the dight tailing observed in the BTC, aswith
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Soil A. A Freundlich constant (K)) of 0.38 ("/kg " and an empirical coefficient (n)
of 0.73 were obtained.

Figure 17 shows the observed TNT BTC for Soil B and the fitted semianalyti-
cal model results for Langmuir equilibrium sorption. Langmuir equilibrium
sorption improved the fit (RMS = 1.857 mg () dlightly over the fits provided by
the linear and Freundlich sorption models. The Langmuir sorption mode, like
the Freundlich model, was able to capture most of the tailing shown by the Soil B
TNT BTC. A Langmuir constant (K,) of 0.045 (/mg and a sorption capacity (Q)
of 9.0 mg/kg were obtained.
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Figure 17. Observed and fitted TNT breakthrough curves for Soil B for
Langmuir sorption and first-order transformation

Soil C. Figure 18 shows the observed TNT BTC for Soil C and the fitted
semianalytical model results for linear equilibrium sorption. Likethe TNT BTC
for Soil B, steady-state TNT effluent concentrations were at the step input TNT
concentration, indicating that transformation during transport through Soil C soil
was negligible. Linear equilibrium sorption provided an adequate fit to most of
the Soil C TNT BTC (RMS = 3.214 mg ("). Near the end of washout, the Soil C
TNT BTC showed tailing, which could not be captured using the model with
linear equilibrium sorption. A linear equilibrium distribution coefficient (K,) of
0.47 (/kg was obtained for the Soil C TNT BTC.

Figure 19 shows the observed TNT BTC for Soil C and the fitted semianal yti-
cal model results for Freundlich equilibrium sorption. Freundlich equilibrium
sorption improved the data fit considerably (RMS = 1.460 mg (") over the fit
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provided by the linear sorption model. Improvement of the fit was due primarily
to the ability of the Freundlich model to capture the tailing observed in the BTC.
A Freundlich constant (K,) of 1.6 mg™ ™ (" kg™ and an empirical coefficient (n) of
0.70 were obtained.

Figure 20 shows the observed TNT BTC for Soil C and the fitted semianal yti-
cal model results for Langmuir equilibrium sorption. Langmuir equilibrium
sorption did not improve the data fit (RMS = 1.685 mg (*) over the fit provided
by the Frendlich sorption model. The Langmuir sorption model, like the
Freundlich model was able to capture most of the tailing shown by the Soil C
TNT BTC, athough not quite as well as the Freundlich sorption moddl. A
Langmuir constant (X;) of 0.020 ¢/mg and a sorption capacity (Q) of 46.0 mg/kg
were obtained.
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Figure 20. Observed and fitted TNT breakthrough curves for Soil C for
Langmuir sorption and first-order transformation

Soil D. Figure 21 shows the observed TNT BTC for Soil D and the fitted
semianalytical model results for linear equilibrium sorption and first-order decay.
From the steady-state portion of the BTC, afirst-order transformation rate con-
stant (p) of 0.0017 hr* was obtained. Linear equilibrium sorption, along with
first-order transformation, did not provide a very good fit to the Soil D TNT BTC
(RMS = 4515 mg (). The model deviated dightly from the observed data near
the beginning of the steady-state portion of the BTC. The model also failed to
capture the considerable amount of tailing observed in the Soil D BTC. A linear
equilibrium distribution coefficient (K,;) of 0.95 (/kg was obtained for the Soil D
TNT BTC.
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Figure 21. Observed and fitted TNT breakthrough curves for Soil D for linear
sorption and first-order transformation

Figure 22 shows the observed TNT BTC for Soil D and the fitted semianalyti-
cal modd results for Freundlich equilibrium sorption and first-order decay.
Freundlich equilibrium sorption improved the fit (RMS = 3.429 mg (") over the
fit provided by the linear sorption model, due primarily to the ability of the
Freundlich model to capture the tailing observed in the BTC. However, the fit to
theinitial breakthrough portion of the BTC deteriorated with Freundlich sorption
as opposed to linear sorption. A Freundlich constant (X, ) of 4.0 mg® ™ (" kg™
and an empirical coefficient () of 0.65 were obtained.

Figure 23 shows the observed TNT BTC for Soil D and the fitted semianalyti-
cal modé results for Langmuir equilibrium sorption and first-order decay. Lang-
muir equilibrium sorption did not improve the fit (RMS = 3.942 mg (™) compared
with the fit provided by the Freundlich sorption model. The Langmuir sorption
model, like the Freundlich model, was able to capture most of the tailing shown
by the Soil D TNT BTC but did not fit the front portion of the BTC well. A
Langmuir constant (K;) of 0.028 ¢/mg and a sorption capacity (Q) of 80.0 mg/kg
were obtained.

Crane soil. Figure 24 shows the observed TNT elution curve for Crane soil
and the fitted semianalytical model results for linear equilibrium sorption and
first-order decay. Linear equilibrium sorption with first-order decay could not
simulate the persistence in TNT concentrations (RMS = 0.149 mg (). A linear
equilibrium distribution coefficient (K,) of 6.0 (/kg and afirst-order decay rate
constant () of 0.029 hr* were obtained for the Crane soil TNT elution curve.

Chapter 3 Results and Discussion

31



32

1.2

T T " T
/ END OF STEP
i INPUT (11.93 T)
1.0 frrmremm el Y R - R PP R P PP PPPPR -
08 [- —
£ Ky =400mgt"™™ ¢ ig
S %8 n =065 .
B =00017h!
04 |- ~
LEGEND
s} DATA
© SEMI-ANALYTICAL
02 |- MODEL
o |
o lo—soo | '
0 5 10 15 20

T, PORE VOLUMES ELUTED

Figure 22. Observed and fitted TNT breakthrough curves for Soil D for
Freundlich sorption and first-order transformation
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Figure 23. Observed and fitted TNT breakthrough curves for Soil D for
Langmuir sorption and first-order transformation
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Figure 24. Observed and fitted TNT elution curves for Crane soil for linear
sorption and first-order transformation

Figure 25 shows the observed TNT e ution curve for Crane soil and the fitted
semianalytical model results for Freundlich equilibrium sorption and first-order
decay. Freundlich equilibrium sorption improved the fit (RMS = 0.100 mg (™)
somewhat over the linear sorption model, but till failed to smulate the persis-
tence of TNT concentrationsin the leachate. A Freundlich constant (K ) of
20 mg™® " (" kg™t and an empirical coefficient (1) of 0.10 were obtained, along
with afirst-order decay rate constant () of 0.029 hr.

Additional improvement was gained (RMS = 0.085 mg () in the fit between
the observed TNT elution curve for Crane soil and the semianalytica model
results when Langmuir sorption was used in the semianalytical modd (Fig-
ure 26). The Langmuir sorption model also failed to capture much of the persis-
tence of TNT concentrations in the |eachate, like the Freundlich and linear
models. A Langmuir constant (K,) of 20 (/mg and a sorption capacity (Q) of
18 mg/kg were obtained, along with afirst-order decay rate constant (L) of
0.029 hr.

Figure 27 shows the observed TNT el ution curve for Crane soil and the fitted
semianaytical model results for film diffusion, linear equilibrium sorption, and
first-order decay. Addition of the film diffusion term alowed the model to simu-
late the persistence in TNT effluent concentrations (RMS = 0.068 mg (). A
linear equilibrium distribution coefficient of 1.8 (/kg, afilm coefficient of
5.0 x 10° t/kg/hr, and a decay rate constant of 0.03 hr* were obtained from the
curve fit.
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Figure 25. Observed and fitted TNT elution curves for Crane soil for Freundlich
sorption and first-order transformation
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Figure 26. Observed and fitted TNT elution curves for Crane soil for Langmuir
sorption and first-order transformation
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Figure 27. Observed and fitted TNT elution curves for Crane soil for film
diffusion, linear sorption, and first-order transformation

Summary. The TNT BTCsfor Soils A, B, and C were fitted adequately using
the semianalytical model with first-order decay and nonlinear equilibrium sorp-
tion. Both the Freundlich and Langmuir sorption models improved the fits as
compared with the linear model. The Langmuir model fit the TNT BTCs from
Soils A and B dlightly better than the Freundlich model. The opposite was true
for the TNT BTCsfrom Soils C and D. Although nonlinear sorption improved
the overal fit to the Soil D BTC compared with linear sorption, the goodness of
fit to the initial breakthrough portion of the Soil D BTC was diminished by the
addition of nonlinear sorption. TNT sorption and transformation parameters and
RMS values estimated from the BTCs are summarized in Table 4.

Good TNT mass balances (Table 5) for Soils A, B, C, and D suggest that the
estimates of sorption and transformation parameters are credible. Between 96.1
and 105.9 percent of TNT introduced to the soils were accounted for as TNT and
TNT transformation products.

The Crane e ution curve could not be simulated well using first-order decay
with linear, Freundlich, or Langmuir equilibrium sorption models. Thiswas
primarily due to the persistencein TNT concentrations in el uate from the Crane
soil. Addition of adescriptor for dissolution (film diffusion model), along with
linear equilibrium sorption and first-order decay, however, enabled the semiana
lytical model to capture this persistence. TNT sorption and transformation
parameters and RMS values estimated from the Crane leaching curve are
summarized in Table 4.
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Table 4
TNT Sorption and Transformation Parameters and RMS Values'
Estimated from the BTCs for Soils A, B, C, and D and from the
Elution Curve for Crane Soil
Soil A B C D Crane
Linear Sorption
u (hr?) 0.0011 0.0000 0.0000 0.0017 0.029
K, (t/kg) 0.12 0.11 0.47 0.95 6.0
RMS (mg (™) 1.856 2.973 3.214 4.515 0.149
Freundlich Sorption
u (hr?) 0.0011 0.0000 0.0000 0.0017 0.029
K, (mg™ ™ ("kg?) 0.45 0.38 1.6 4.0 20
n 0.73 0.73 0.70 0.65 0.10
RMS (mg (™) 1.775 2.199 1.460 3.429 0.100
Langmuir Sorption
u (hrt) 0.0011 0.0000 0.0000 0.0017 0.029
K, (t/mg) 0.04 0.045 0.020 0.028 20
Q (mg/kg) 9.0 9.0 46.0 80 18
RMS (mg (™) 1.265 1.857 1.685 3.942 0.085
Film Model
u (hr) 0.03
K, (t/kg) 1.8
Kim (N1 - - - - 5.0 x10°
RMS (mg (™) - - - - 0.068
! Shading indicates the best RMS value for each soil.
Table 5
TNT Mass Balance'
Soil A B C D
TNT as TNT eluted 97.6 105.1 100.7 95.1
TNT residual® 0.0 0.0 0.1 0.0
TNT as 2A-DNT eluted 0.3 0.3 0.2 0.2
TNT as 4A-DNT eluted 0.7 0.5 0.3 0.8
Total 98.6 105.9 101.3 96.1
! Computed on a molar basis and normalized for a total molar input of 100.
2 TNT remaining in soil after completion of experiment.
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Discussion

The Moldrup et a. (1992) and Y amaguchi et al. (1994) semianalytical model
was easily implemented in MathCAD. Various process descriptors were incor-
porated into the model with minimal modifications. Investigation of the applic-
ability of nonlinear descriptors to laboratory soil column data was possible with
the semianalytical model. The ability to incorporate nonlinear process descriptors
makes the semianalytical model much more flexible than fully analytical solu-
tions, which are restricted to linear descriptors. Extensive knowledge of com-
puter programming, which is often needed with fully numerica solutions, was
not required in implementing the semianalytical model. Comparisons of the
semianalytical model to two analytical solutions and one numerical model indi-
cated that the semianalytical model was properly implemented in MathCAD.

Equilibrium sorption and first-order transformation were adequate process
descriptors for smulating the TNT BTCs for Soils A, B, and C. Nonlinear sorp-
tion descriptors (Freundlich and Langmuir) improved the overall fit for each
BTC over fits provided by alinear sorption descriptor. Improvement of the fits
was due primarily to the ability of the nonlinear descriptors to capture tailing near
the end of washout. The Freundlich sorption descriptor fit the BTCs for Soils A
and B dightly better than the Langmuir sorption descriptor. Conversely, the
Langmuir descriptor fit the BTCs for Soils C and D dightly better than the
Freundlich descriptor. Differences between the Freundlich and Langmuir fits did
not appear significant. A nonlinear descriptor for TNT sorption is consistent with
much of the column data and most batch isotherms reported in the literature
(Townsend and Myers 1996). Batch isothermsin the literature are also divided
between Freundlich and Langmuir descriptors, as were the modd fits for the soils
here.

Freundlich and Langmuir sorption descriptors improved the overall fits for
SoilsA, B, C, and D by alowing the model to capture the tailing near the end of
washout. Thefit to theinitial breakthrough portion of the Soil D BTC, however,
was worsened by the nonlinear descriptors compared with the fit obtained for
linear sorption. Since Freundlich or Langmuir sorption could not improve the
washout portion of the Soil D BTC without decreasing the goodness of fit to the
initial breakthrough portion of the BTC, a descriptor other than Freundlich or
Langmuir equilibrium sorption may be needed to fully describe TNT transport in
the Soil D column.

BTC asymmetry may be caused by physical phenomena such as mass transfer
limitations or chemical reaction phenomena (Brusseau and Rao 1989). Physical
nonequilibrium occurs when regions of immobile water exist, and solutes are
transported through these regions only by diffusion. Immobile water regions have
been conceptualized as intra-aggregate microporosity, dead-end pores, surface
films, and matrix porosity of fractured media (Brusseau and Rao 1989).

The Crane soil eution curve showed significant persistencein TNT concen-
trations that the semianalytical model with equilibrium sorption (linear or non-
linear) and first-order decay could not smulate. This persistence was attributed

Chapter 3 Results and Discussion

37



38

to dissolution of crystalline TNT (Pennington et a. 1995), based on the shape of
the elution curve and high measured TNT concentrations in one section of soil
after elution was completed. Thus, a descriptor for the process of dissolution was
added to the semianalytical model. The added dissolution descriptor accounts for
mass transfer limitations between two regions of potentially contrasting concen-
tration. For the case of nonequilibrium sorption, the film model accounts for
diffusion through films surrounding soil solids. For dissolution, the film model
accounts for diffusion through films surrounding contaminant crystals.

The semianalytical model allowed the dissolution process to be investigated
for applicability to Crane soil. Addition of afilm diffusion descriptor greatly
improved the fit compared with the fits obtained when only sorption and trans-
formation processes were accounted for. Thus, the dissolution process appears to
be significant for the Crane soil, and the film diffusion model appearsto be an
accurate descriptor for the dissolution process. It is aso possible that the film
diffusion model was actually describing nonequilibrium sorption or accounting
for some other process, but the data suggest that the dissolution process was
applicable to Crane soil.

The good fits obtained from the semianalytical model do not necessarily mean
that the process descriptors used are correct. Other processes and/or process
descriptors could be involved in the TNT transport process and may provide
similar fitsto these data. Similarly, processes other than the ones emphasized
here may apply for different environmental conditions. Thus, caution should be
used when identifying significant processes and devel oping descriptors for those
processes.
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4 Conclusions

The Moldrup et a. (1992) and Yamaguchi et al. (1994) semianalytical model
isauseful tool for evaluating laboratory soil column data. The model is simple to
implement, yet provides the user the ahility to apply more complicated process
descriptors to soil column data than fully analytical solutions allow. The semi-
analytical model alows modification of processes, descriptors, and boundary
conditions with minimal effort.

The TNT BTCsfor three of four soils were simulated adequately using the
semianalytical model with equilibrium sorption and first-order transformation.
Freundlich and Langmuir sorption descriptors provided better fits to the BTCs
than the linear sorption model, primarily because of the ability of the nonlinear
models to capture the tailing observed in the BTCs. Differences in the fits pro-
vided by the Freundlich mode to fits provided by the Langmuir model appeared
to be inggnificant for the experimental conditions encountered here. First-order
transformation was adequate for the data here, although this might not prove to be
the case for other soils and environmental conditions where transformation is
more significant.

The eution curve for Crane soil (Pennington et al. 1995) could not be simu-
lated adequately by the semianalytical solution with equilibrium sorption and
first-order transformation alone. In addition to equilibrium sorption and first-
order transformation, a descriptor for TNT dissolution that accounted for mass
transfer limitations through films of immobile water surrounding TNT crystals
was needed to adequately ssmulate the Crane soil elution curve.

Laboratory soil column studies provide information on TNT transport
processes, descriptors for these processes, and estimates for parameters quantify-
ing process descriptors. The Moldrup et a. (1992) and Y amaguchi et al. (1994)
semianalytical model is an excellent tool for smulating laboratory soil column
data, investigating process descriptors, and obtaining process parameters needed
for field-scale modeling.
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Soil A

(Freundlich sorption and first-order transformation)

Observed Data Input soil properties
T 0.0 [ 0.394 ] pp =1.152 <-- bulk density, kg/l
0.0 0.619
0.0 0.783 6:=0.53 <— porosity
6.55 1.085 5
D =44-10°  <- dispersion coefficient, cm?/sec
15.0 1.189 il
23.9 1.294
29.7 1.403
374 1.517
39.6 1.63
43.1 1.961 —~ ” .
Coliimn operating parameters
440 2.198
44.6 2434 ui=1310% < pore water velocity, cm/sec
43.8 2.789 4o e
L .=12.4 <=-- COjiumn iengin, cm
43.7 3.145
443 3501 t 9.74 < 1 luted at end of
=9, -- pore volumes eluted at e
44.0 3.849 SPT D ot néoe
p Input
442 4.331
45.0 4.565 cl =459 <-- input_ concentration before end of
step input
439 4,798
433 5.034 c2:=0 <-- inpu’f concentration after end of
44.6 5.383 step tnput
447 5.728 Cg:=0 <-- initial solute concentration in the soil
45.1 5.92
440 6.208"
45.0 6.427
44.0 6.769
442 7.128
444 7.482
Cobs =| 472 T obs 7.953
46.7 8.416
46.8 8.871
470 9.327
46.0 9.676
444 9.864
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The following function rounds numbers to the nearest
integer.

round(x) = if(x - floor(x)<0.5, floor(x), ceil(x))

Ay

<-- pore voiume increment

<-- number of data points

LS PRI

increment

U LT HVGRIUST pUlv VAl

<— reaction coefficient, sec”!

<-- reaction term mg:liter!-sec"!



<-- solute unit mean travel distance

<-- empirical constant
<— solute dispersivity, cm
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Criterion 2: @ must be less than 0.15
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o1 emeind
Criterion 3 =7.16310
max T\
T cton =ceill ———— <— number of pore volume steps (the ceil function returns the next integer
tep \delta T )
above its argument)
T gop =3.334°10°
step .
0.. T gte
P <- counter
Z max =50 <— maximum distance analyzed
oy Zmax
Zstep = "\ delta ) <-- maximum number of distance steps
Z ste =100
step
=1..z -1
J step <~ counter
L
d ctan =r0und/77—~\ .. . L oay PLO o L orat 1T~ . o L oal
i \delta | <-- distance step at the distance of interest (the round function returns the
closest integer to its argument)
do.. =30
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equal to c2 for pore volumes greater than the step input.
input(i) := I ci if i-deita<Sstep 1
|c2 if i-deltap>step T
- —_
Cold. , ~%“0
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A(C) 25— -{, 5+ l_,
m(¢) \z-deltaz 2-delta, deltazz/
1 / & 12 L'ﬁ'\TJ 1\
B(e) =g R () - — - 1|
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The following function increases the concentration profile (coq) by one pore volume step.

f(colds2 step) =

Fuad

Con(Tstep,cold) = for iel.T

step
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The foliowing function picks out the fitted concentrations that correspond to the observed concentrations.
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semlanalytlca.l model to the LSC data.

TNT BTCs for three of four soils were simulated adequately with equilibrium sorption and pseudo first-order
transformation. Nonlinear descriptors for sorption (Freundlich and Langmuir) provided better fits to the data than a
linear sorption descriptor, primarily because of the ability of the nonlinear models to capture tailing observed in the
BTCs. Differences between the Freundlich and Langmuir fits were insignificant. The TNT BTC for one soil
showed significant asymmetry on both rising and declining limbs that could not be adequately simulated by
equilibrium sorption (linear and noniinear) and pseudo first-order transformation.

The elution curve for the contaminated soil couid not be simulated satisfactorily with equilibrium sorption and
pseudo first-order transformation alone. A descriptor for TNT dissolution was needed in addition to equilibrium
sorption and pseudo first-order transformation to adequately simulate the contaminated soil elution curvé.

The one-dimensional, semianalytical model is recommended for application to laboratory soil column data and

the development of process descriptors from such data because the model is easy to use and allows for evaluation of
complicated process de 'ptors. Although the model is one-dimensional and therefore has limited applicability to
field problems, process descriptors developed from LSC data using the model are anticipated to be useful for
structuring two- and three-dimensional numerical models of TNT subsurface transport.



